学曲谱,请上曲谱自学网!

全天时大气温度探测的纯转动拉曼激光雷达系统设计与仿真—中国

时间:2021-02-07 21:08:06编辑:刘牛来源:曲谱自学网

提出了一种全天时大气温度探测的纯转动拉曼激光雷达系统,选用Nd∶YAG脉冲激光器的四倍频输出266.0 nm作为激励波长,避开了强烈的太阳背景光对系统探测大气温度的影响。设计了一种新型三次衍射式双光栅多色仪作为激光雷达的分光系统。仿真结果表明,双光栅多色仪可实现Stokes与Anti-Stokes高低量子数通道转动拉曼谱线的有效提取,对米-瑞利弹性散射信号的抑制率可达到60~70 dB。充分考虑臭氧吸收和荧光对系统探测性能的影响,所设计的日盲紫外纯转动拉曼激光雷达采用模拟探测模式可在12 min的积分时间内实现2.2 km高度范围内大气温度的全天时探测。

关键词

Abstract

A pure rotational Raman lidar for measuring atmospheric temperature on daytime is proposed. The quadruple frequency of 266.0 nm of Nd∶YAG pulsed laser is selected as the transmitter wavelength, which avoids the effect of solar background light on the detection of atmospheric temperature. A new type of triple-diffraction double grating polychromator is designed as the spectroscopic system of lidar. Simulation results show that the designed double grating polychromator can achieve the extraction of Stokes and Anti-Stokes pure rotational Raman signals from high and low quantum number channels. The suppression rate of the Mie-Rayleigh scattering signals is up to 60-70 dB. Meanwhile, considering the effects of the ozone absorption and fluorescence on the detection performance of the system, the designed solar-blind ultraviolet pure rotational Raman lidar system with the analog detection mode can detect atmospheric temperature in the range of 2.2 km in 12 minutes′ integration time.

全天时大气温度探测的纯转动拉曼激光雷达系统设计与仿真—中国

补充资料

中图分类号:TH741

DOI:10.3788/AOS201939.0301004

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金(41775035,41627807)、中国博士后基(2014M560799)

收稿日期:2018-09-10

修改稿日期:2018-10-23

网络出版日期:2018-11-01

作者单位    点击查看

高飞:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
黄波:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
石冬晨:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
朱青松:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
张锐:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
汪丽:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
李仕春:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
华灯鑫:西安理工大学机械与精密仪器工程学院, 陕西 西安 710048

联系人作者:华灯鑫(dengxinhua@xaut.edu.cn)

【1】Hua D X, Kobayashi T. UV Rayleigh-Mie Raman lidar for simultaneous measurement of atmospheric temperature and relative humidity profiles in the troposphere [J]. Japanese Journal of Applied Physics, 2005, 44(3): 1287-1291.

【2】Behrendt A, Reichardt J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator [J]. Applied Optics, 2000, 39(9): 1372-1378.

【3】Guo J Q, Bu L B, Wang M, et al. Measurement of temperature profiles above Nanjing using Raman lidar[J]. Chinese Journal of Lasers, 2012, 39(s1): s114009.
郭劲秋,卜令兵, 王敏,等. 基于拉曼激光雷达的南京上空大气温度廓线观测[J]. 中国激光, 2012, 39(s1): s114009.

【4】Li Y J, Song S L, Li F Q, et al. High-precision measurements of lower atmospheric temperature based on pure rotational Raman lidar [J]. Chinese Journal of Geophysics, 2015, 58(7): 2294-2305.
李亚娟, 宋沙磊, 李发泉, 等. 基于纯转动Raman激光雷达的中低空大气温度高精度探测[J]. 地球物理学报, 2015, 58(7): 2294-2305.

【5】Konisky D M, Hughes L, Kaylor C H. Extreme weather events and climate change concern [J]. Climatic Change, 2016, 134(4): 533-547.

【6】Wu Y H, Hu H L, Hu S X, et al. Rayleigh-Raman scattering lidar for atmospheric temperature profiles measurements [J]. Chinese Journal of Lasers, 2004, 31(7): 851-856.
吴永华, 胡欢陵, 胡顺星, 等. 瑞利-拉曼散射激光雷达探测大气温度分布 [J]. 中国激光, 2004, 31(7): 851-856.

【7】Wulfmeyer V, Bsenberg J. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications [J]. Applied Optics, 1998, 37(18): 3825-3844.

【8】Hua D X, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere [J]. Optics Letters, 2004, 29(10): 1063-1065.

【9】Gao F, Nan H S, Huang B, et al. Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols [J]. Acta Physica Sinica, 2018, 67(3): 030701.
高飞, 南恒帅, 黄波, 等. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真 [J]. 物理学报, 2018, 67(3): 030701.

【10】Jia J Y, Yi F. Atmospheric temperature measurements at altitudes of 5-30 km with a double-grating-based pure rotational Raman lidar [J]. Applied Optics, 2014, 53(24): 5330-5343.

宽调谐范围光栅外腔窄线宽405 nm 蓝紫光半导体激光器研究—中国

基于全方位地震数据的方位AVO(AVAZ)反演

热门曲谱

Copyright © 2014-2019 曲谱大全(www.qpzxw.com)曲谱自学网版权所有 备案号:皖ICP备2021004734号-1

版权声明:曲谱网所有曲谱及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。

联系邮箱:qupudaquanhezuo@gmail.com