学曲谱,请上曲谱自学网!

遗传算法的应用_遗传算法有哪些应用?

时间:2020-03-04 06:14:00编辑:刘牛来源:曲谱自学网

遗传算法有哪些应用?

遗传算法的搜索策略和优化搜索方法是不依附于梯度信息及其它的辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学。遗传算法的应用领域有很多,下面针对一些主要的应用领域做简单的介绍。

1.函数优化:该领域是遗传算法得以应用的经典领域,同时它也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于函数优化问题,如一些非线性、多模型、多目标等函数问题用遗传算法很容易得到较好的结果,而用其他算法则较难。

2.组合优化:由于组合优化问题的搜索空间在不断地增大,有时用枚举法很难得到最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。比如,在旅行商问题、装箱问题及图形划分等问题上,已经成功得以应用了遗传算法。

为什么遗传算法能被广泛的应用到各个领域

遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。一、遗传算法的特点 1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。 2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。 3.遗传算法有极强的容错能力遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。 4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。 5.遗传算法具有隐含的并行性

扩展

对程序设定遗传算法,是不是就像人工智能一样能自我进行运算、学习,最终进化找到最优算法

遗传算法有哪些比较直观的应用呢?

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

可用于排班、排课、路径优化、配置优化、生产排程等等优化问题

遗传算法具体应用

1、函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。

2、组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

3、车间调度

车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。

从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。


扩展资料:

遗传算法的缺点

1、编码不规范及编码存在表示的不准确性。

2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。

3、遗传算法通常的效率比其他传统的优化方法低。

4、遗传算法容易过早收敛。

5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。

参考资料来源:百度百科-遗传算法



遗传算法有哪些比较直观的应用

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

为什么遗传算法能被广泛的应用到各个领域

遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。一、遗传算法的特点 1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。 2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。 3.遗传算法有极强的容错能力遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。 4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。 5.遗传算法具有隐含的并行性

扩展

对程序设定遗传算法,是不是就像人工智能一样能自我进行运算、学习,最终进化找到最优算法

遗传算法有哪些方向?

  遗传算法研究方向主要有以下几个方面:  
1. 遗传算法基础理论研究
  在遗传算法中,群体规模和遗传算子的控制参数的选取 是必要的试验参数。
遗传算法的收敛也是遗传算法基础理论研究方向之一。
   
2. 遗传算法的分类系统
  分类系统属于基于遗传算法的机器学习中的一类,包括一个简单 的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统 。
分类系统被人们越来越多地应用在科学、工程和经济领域中,是目 前遗传算法研究中一个十分活跃的领域。
3. 分布并行遗传算法
  分布并行遗传算 法的研究表明,只要通过保持多个群体和恰当控制群体间的相互作用 来模拟并行执行过程,即使不使用并行计算机,也能提高算法的执行效 率。   
4. 遗传进化算法
  模拟自然进化过程可以产生鲁棒的计算机算法--进化算法。其余两种算法是进化规划和进化策略 。
  
5. 遗传神经网络
  包括连接权、网络结构和学习规则的进化。

遗传算法应用

根据滤波器的滤波效果找到适应性函数,然后对滤波器进行编码,交叉,变异,通过适应性函数找到合适的滤波器!好久不搞遗传算法了,建议你看几个遗传算法应用的例子!

扩展

没有这方面的例子,因为滤波器设计优化目标是多个的,而且这个不适合二进制编码,另外变量比较多,我知道单变量单目标优化怎么进行,但是多变量多目标优化怎么进行就不知道了,而且应该采用什么样的编码?

补充

可以吧每个变量都加到编码里面去,主要是编码与适应度函数的选择,朝一定的方向遗传就可以了,多考虑,遗传算法能够实现的,我这方面做成了。只是不会达到最优解,只是在最优解附近就不错了.

遗传算法有哪些特点?

经现代医学研究表明,DNA是现存生命最重要的遗传物质。而遗传则是指经由基因的传递,使后代获得亲代的特征。遗传学正是研究遗传这一现象的一门学科,除遗传因素外,还有环境,以及环境与遗传的交互作用也是决定生物特征的因素。

遗传算法是一种可用于复杂系统优化的一种搜索算法,与传统的算法相比,具有以下4个特点:第一,它是以决策变量的编码作为运算对象;第二,遗传算法直接以适应度作为搜索信息,无需导数等其他辅助信息;第三,遗传算法使用多个点的搜索信息,具有隐含并行性;最后,它没有使用非确定性规则,而是采用了概率搜索技术。

遗传算法在智能控制中有哪些应用

应用很多了,数值优化、组合优化、机器学习、智能控制、人工生命、图像处理、模式识别等领域都有应用。最简单的应用就是函数优化问题了,即求某一较复杂的函数的极值。相关matlab代码或C代码你想要的话,我可以发给你,留下邮箱。

遗传斑怎么治_遗传雀斑怎么办?????我是男生。

遥远的天空底下_在遥远的天空底下歌词

热门曲谱

Copyright © 2014-2019 曲谱大全(www.qpzxw.com)曲谱自学网版权所有 备案号:皖ICP备2021004734号-1

版权声明:曲谱网所有曲谱及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。

联系邮箱:qupudaquanhezuo@gmail.com