初中数学七年级下册
曲谱自学网今天精心准备的是《初中数学七年级下册》,下面是详解!
data-log="fm:oad,pos:oad-ti,si:0,relv:0,st:2"怎么学初中数学?一些初中数学学习技巧
数学在上学期是就一直上不去,也一直上着小班怎么才能学好呀...
数学在上学期是就一直上不去,也一直上着小班怎么才能学好呀
可以毫不夸张地说,初一是初中三年打基础的一年,掌握好各种运算本领和计算能力对你今后学习代数式运算、函数计算以至于高中的学习都至关重要。
下学期已经过半,很多学生数学越学越吃力,于是忙着报辅导班补课。但是,你知道越学越吃力的原因究竟是什么吗?
我们都知道,随着学期的日渐深入,初中所学的知识会越来越难,到了初一下学期,可以说代数、几何两条主线的脉络已经是非常清晰了。那么这两条主线的未来走势是什么样的呢?
我们先来看看代数的知识主线:在经历了初一上学期的数的运算与式的运算之后,我们的初中代数学习即将进入一个代数变形技巧和数形结合的阶段。
我们先来看代数变形技巧,相信大部分版本的教材里都会有一部分内容是“因式分解”,这就是代数变形技巧的巅峰。在这一章节之中,学生所面对的将会是纯粹而抽象的代数板块,没有概念,只有茫茫多的技巧。
那么,什么样的学生会在这里犯难呢?
1、初一上代数基本功不扎实,整式运算等内容掌握不牢固的;
2、从初一上开始,已经习惯“刷题求高分”的(因为这里的题目根本刷不完);
3、数学思维习惯的养成缺失,在方法技巧的原理没搞懂时,就“迫不及待”想先把题做了,找找感觉,然后就在不断重复的一知半解中慢慢麻痹的。
如果这三类学生没人帮助,没有找到正确的学习技巧,那么必然会在初一下学期的学习中渐渐迷失,成绩逐渐下降。
那么,因为教材版本的差异,如果学生在这个学期先进入的是不等式的学习,又会面临什么样的问题呢?相信大多数学生在初一上学期已经学习过了方程,进度快的地区现在已经学习到了方程组,与这两个章节对比来看,同等条件下,不等式比等式变化多,更抽象,更难理解。
而在这一部分,以下三种学生将会面临迷失的风险:
1、一元一次方程概念、解法、衍生知识掌握有漏洞的;
2、数学思维严谨度不够,不重视解题过程细节,做题习惯不好的;;
3、面对大信息量实际综合问题时,不够耐心的;
那么这三种学生也需要从学习习惯和学习方法上做出改进,才能更好地适应节奏。
然后我们再来看看几何的知识主线:在初一上学期我们学习了几何的入门概念以及直线、射线、线段之后,本学期我们也要开始对于封闭式图形的学习了。
本学期我们即将学到的第一个封闭式图形,就是三角形,而三角形不仅是初中的制高点,也是平面几何的制高点。甚至我们可以大胆的说:“得三角形者得中考数学!”这一块的知识点,博大精深,贯穿3年,关联性强,在我们的七年级下学期当中,它就是我们期末考试的基石。
这两类学生会在这里犯难:
1、不能够独立思考克服必经困难,遇到不会的题,一味根据图形找解析的。
2、不关注总结模型和辅助线思路,只盲目刷题的。
所以,当学生说学校的知识越学越难的时候,一定要注意是不是你的学习方法出了问题。
怎样学好数学初一下册
初一上册主要的知识点是有理数、整式的加减、一元一次方程,图形的初步;
初一下册主要的知识点是相交线与平行线、实数、平面直角坐标系、二元一次方程、不等式与不等式组、数据
扩展
初一数学上下册知识点
人教版的...
人教版的
1.1 数字与字母的乘积,这样的代数式叫做单项式。
几个单项似的和叫做多项式。
一个单项式中,所有字母的指数和叫做这个单向式的次数。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
1.3 同敌数幂相乘,底数不变,指数相加。
1.4幂的乘方,底数不变,指数相乘。
积的乘方等于每个因数成方的积。
1.4同底数幂相除,底数不变,指数相减。
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。
2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
对顶角相等
2.2
同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角
内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。
同旁内角定义
同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。
两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。
【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。
【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。
3.2
有效数字
一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。
4.1
☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。
必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.
第五章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。
三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
三角形的三条高交于一点.
三角形的三内角平分线交于一点.
三角形一内角平分线和另外两顶点处的外角平分线交于一点.
等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
(3)等边三角形的各角都相等,并且都等于60°。
.直角三角形(简称RT三角形):
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。
(3)全等三角形的判定
组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
第七章
轴对称
如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。 对称轴:折痕所在的这条直线叫做对称轴。
性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
(3)中心对称图形一定是轴对称图形,而轴对称图形不一定是中心对称图形
七年级下册数学全部概念
1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
2.1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
设送货人员有X人,则销售人员为8X人。
(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154
X=14
8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员
现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
3.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
4.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
5.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
6..甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
7.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
1.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?
设小组成员有x名
5x=4x+15+9
5x-4x=15+9
8.某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问
(1) 初一年级人数是多少?原计划租用45座客车多少辆?
解:租用45座客车x辆,租用60座客车(x-1)辆,
45x+15=60(x-1)
解之得:x=5 45x+15=240(人)
答:初一年级学生人数是240人,
计划租用45座客车为5辆
9.将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?
解;设为XH
1/5+1/20X+1/12X=1
8/60X=4/5
X=6
甲,乙两人合作的时间是6H.
10.甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()
设甲数为4X.则乙为3X.丙为3X-2.
4X+3X+3X-2=53
10X=53+2
10X=55
X=5.5
3X=16.5
3X-2=16.5-2=14.5
乙为16.5,丙为14.5
11.粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?
设停电x小时. 粗蜡烛每小时燃烧1/5,细蜡烛是1/4
1-1/5X=4(1-1/4)
1-1/5X=4-X
-1/5+X=4-1
4/5X=3
X=15/4
12.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
设十位数为x
则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171
化简得
424x=1272
所以:x=3
则这个三位数为437
13.一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?
解:设⑵班捐x册
3x=152+x+3xX40%
3x=152+x+6/5x
3x-x-6/5x=152
4/5x=152
x=190…⑵班
190X3=570(本)
14.a b 两地相距31千米,甲从a地骑自行车去b地 一小时后乙骑摩托车也从a地去b地 已知甲每小时行12千米 乙每小时行28千米 问乙出发后多少小时追上甲
设乙出发x小时后追上甲,列方程
12(X+1)=28X X=0.75小时,即45分钟
15、一艘货船的载重量是400t,容积是860m^3.现在要装生铁和棉花两种货物,生铁每吨体积是0.3m^3,棉花每吨体积是4m^3.生铁和棉花各装多少吨,才能充分利用这艘船的载重量和容积?
设铁x吨,棉花为400-x吨
0.3x+4*(400-x)=860
x=200t
答案为铁和棉花各200吨
16、某电脑公司销售A、B两种品牌电脑,前年共卖出2200台,去年A种电脑卖出的数量比前年多6%,B种电脑卖出的数量比前年减少5%,两种电脑的总销量增加了110台。前年A、B两种电脑各卖了多少台?
设前年A电脑卖出了x台,B电脑卖出了2200-x台
去年A电脑为1.06x,B电脑为0.95(2200-x)
1.06x+0.95*(2200-x)=2200+110
x=2000
则A电脑2000台,B电脑200台
17.地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里)
设陆地的面积是X
X+71/29X=5.1
X=1.479
即陆地的面积是:1.5亿平方公里。
18. 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少?
设下降高度是X
下降的水的体积等于铁盒中的水的体积。
3.14*45*45*X=131*131*81
X=218.6
水面下降218.6毫米。
19.内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高?
内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水
所以两个容器体积相等
内径为300毫米,内高为32毫米的圆柱形玻璃盘体积
V=π(300/2)^2*32=720000π
设玻璃杯的内高为X
那么
X*π(120/2)^2=720000π
X=200毫米
20.将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取3.14)
设水桶的高是X
3.14*100*100*X=300*300*80
X=229
甲、乙两种商品的原单价之和为100元,现将甲商品降价10%,乙商品提价5%,调价后甲、乙两种商品的单价之和比原来提高了2%,甲、乙两种商品的原单价各是多少?
甲、乙两种商品的原单价之和为100元,现将甲商品降价10%,乙商品提价5%,调价后甲、乙两种商品的单价之和比原来提高了2%,甲、乙两种商品的原单价各是多少? 设甲单价为Ⅹ元,那么乙单价为(100-Ⅹ)元. Ⅹ×( 1-10 ‰) + ( 100 -Ⅹ )× ( 1 +5 ‰ ) = 100 × (1+2‰)解得:x=20
即水桶的高是229毫米
初一数学下册200道应用题及答案
请各位帮帮归纳一下,7年级下册的数学公式(从第一课到最后一课),谢谢,由于怕浪费分数,所以得到好的我会给高分,谢谢大家,最好列得清楚明确些。...
请各位帮帮归纳一下,7年级下册的数学公式(从第一课到最后一课),谢谢,由于怕浪费分数,所以得到好的我会给高分,谢谢大家,最好列得清楚明确些。
常见的初中数学公式
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
初一下册数学全部公式
也就是对顶角相等,内错角相等,两直线平行同位角相等那些...
也就是 对顶角相等,内错角相等,两直线平行同位角相等那些
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
初一下册数学定义
初中数学课堂导学案七年级下册配人教版的答案,我还是找不到,不好意思,请问还有其它网址吗?或者直接发一个网址给我。谢谢~~~!...
初中数学课堂导学案七年级下册配人教版的答案,我还是找不到,不好意思,请问还有其它网址吗?或者直接发一个网址给我。谢谢~~~!
百度搜索题谷,进去之后搜索《课堂导学案》,不仅有答案,还是免费的视频讲解,每一题都有!找到别忘给分哦
更多扩展补充
扩展
= =找不到,我输入了 七年级下册课堂导学案 教材/教辅都找不到
补充
扩展
- -谢谢~我按了搜题= =
初中数学课堂导学案七年级下册配人教版的答案
急急急急急...
急急急急急
先搜索www.pep.com.cn进入,点击初中数学,
选择七年级下册,再点击教师用书,
点击每一个“三 习题答案”就可以了!
好不容易才找到的
初一下册数学书答案
(1)角A与角3是GA与HB被AC所截,他们是同位角
(2)角A与角ADF是AC与DF被GA所截,他们是同旁内角
(3)角1与角2是AG与BH被BD所截,他们是内错角
纯属原创,全文结束
初中数学七年级下册。。。。
2009学年第二学期期末复习试卷
七年级数学
一、 细心选一选(本题有5个小题, 每小题3分, 满分15分 ,下面每小题给出的四个选项中, 只有一个是正确的. )
1.把下列某不等式组的解集在数轴上表示,如图所示,则这个不等式组是( ).
A. B.
C. D.
2. 下列四个命题中,真命题的是( )
A.同位角相等 B.相等的角是对顶角
C.邻补角相等 D.a,b,c是直线,且a‖b,b‖c,则a‖c
3.下列平面图形中不能镶嵌成一个平面图案的是( ).
A.任意三角形 B.任意四边形 C.正五边形 D.正六边形
4. 2009年5月31日世界无烟日的口号是“戒烟一小时,健康亿人行”.小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与描述的问题,下列说法正确的是( ).
A.调查的方式是普查 B.本地区只有85个成年人不吸烟
C.样本是15个吸烟的成年人 D.本地区约有15%的成年人吸烟
5.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.
A.4 B.3 C.2 D.1
二、耐心填一填(本题有5个小题,每小题3分, 满分15分)
6.不等式2x-1>5的解集为 .
7. 如图,在△ABC中,∠A = 80°,∠B = 60°,则∠1 = °.
8. 一个多边形的内角和等于360° ,则它是 边形.
9. 点(2,-1)向左平移3个单位长度得到的点在第 象限.
10.规律探索:连结图(1)中的三角形三边的中点得图(2),再连结图(2)中间的三角形三边的中点得图(3),如此继续下去,那么在第n个图形中共有 个三角形.
三、用心答一答(本大题有10小题, 共70分,解答要求写出文字说明, 证明过程或计算步骤)
11、(本题6分)解方程组
12、(本题6分) 解不等式组 ,并在数轴上表示它的解集.
13、(本题6分)若 ,求x和y?
14、(本题6分)如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).把△AOB沿射线OB的方向平移2个单位, 其中A、O、B的对应点分别为D、E、F.
⑴请你画出平移后的△DEF;
⑵求线段OA在平移过程中扫过的面积.
15、(本题6分)如图,AB‖DC, , ,
(1) 求∠D的度数;
(2) 求 的度数;
(3) 能否得到DA‖CB,请说明理由.
16、(本题6分)天河某中学七年级甲、乙两个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值),根据以下图、表提供的信息,回答问题:
(1)请把三个统计图(表)补充完整;
(2)在扇形统计图中,“90~100分”所占的扇形圆心角是多少度?
(3)你认为这三种图表各有什么特点?
17、(本题6分)一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BCD=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
18、(本题9分)根据所给信息,分别求出每只小猫和小狗的价格.
买 一共要70元,
买 一共要50元.
19、(本题9分)某次数学竞赛共20道题。每题答对得10分,答错或不答扣5分。至多答错或不答几道题,得分才能不低于82分?
20、(本题10分)为庆祝北京奥运会的到来,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在金山大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
⑴某校七年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题
意的搭配方案有几种?请你帮助设计出来.
⑵若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说
明(1)中哪种方案成本最低?最低成本是多少元?
初中数学七年级下册
《初中数学七年级下册》是2011年光明日报出版社出版的图书。
热门曲谱
- 刘德华喊话四大天王合体做节目:他们愿意我 彭于晏带违规水果过海关被罚 据台湾媒体报道,彭于晏7月1日返回台北在松山机场过海关的时候,因为不小心带了水果,被海关查获并罚款3000元台币 。有台湾媒体询问机场工作人...[详情]分类:知识库时间:12:37
- led和节能灯哪个好
概括:这道题是贲友颗同学的课后练习题,主要是关于led和节能灯哪个好,指导老师为黎老师。LED节能灯是继紧凑型荧光灯(即普通节能灯...
[详情]分类:知识库时间:14:47 - 个人所得税税率
概括:这道题是蒲值暇同学的课后练习题,主要是关于个人所得税税率,指导老师为阚老师。
题目:个人所得税税率
解:<...[详情]分类:知识库时间:14:51 - 个税计算方法
概括:这道题是文缘卣同学的课后练习题,主要是关于个税计算方法,指导老师为惠老师。负所得税制度的意义财税部门出台了给予弱势群...
[详情]分类:知识库时间:14:51 - 李光洁宣布结婚 彭于晏带违规水果过海关被罚 据台湾媒体报道,彭于晏7月1日返回台北在松山机场过海关的时候,因为不小心带了水果,被海关查获并罚款3000元台币 。有台湾媒体询问机场工作人...[详情]分类:知识库时间:12:37
- 什么可以美白牙齿
概括:这道题是贡泼俊同学的课后练习题,主要是关于什么可以美白牙齿,指导老师为井老师。冷光美白牙齿顾名思义就是用冷光来美白牙...
[详情]分类:知识库时间:14:58 - 什么是连带责任
概括:这道题是满澄檬同学的课后政治练习题,主要是关于什么是连带责任,指导老师为宦老师。
题目:什么是连带责任
...[详情]分类:知识库时间:14:58 - 趣头条与江苏卫视达成战略合作 彭于晏带违规水果过海关被罚 据台湾媒体报道,彭于晏7月1日返回台北在松山机场过海关的时候,因为不小心带了水果,被海关查获并罚款3000元台币 。有台湾媒体询问机场工作人...[详情]分类:知识库时间:12:37
- 利率怎么算
概括:这道题是从纲凑同学的课后练习题,主要是关于利率怎么算,指导老师为殳老师。银行利率表示一定时期内利息量与本金的比率,通...
[详情]分类:知识库时间:14:58 - 名贵树种
概括:这道题是山翁灿同学的课后练习题,主要是关于名贵树种,指导老师为谈老师。
题目:名贵树种
解: ...[详情]分类:知识库时间:14:56 - 埃利斯
概括:这道题是苏似涡同学的课后政治练习题,主要是关于埃利斯,指导老师为裴老师。
题目:埃利斯
解: ...[详情]分类:知识库时间:14:54 - 差异
概括:这道题是巫唐抖同学的课后练习题,主要是关于差异,指导老师为左老师。暂时性差异是由税收法规与会计准则确认时间或计税基础...
[详情]分类:知识库时间:14:53 - 平衡梁
概括:这道题是浦晓淖同学的课后练习题,主要是关于平衡梁,指导老师为赵老师。平衡梁为吊装机具的重要组成部分,可用于保持被吊设...
[详情]分类:知识库时间:14:54 - 建筑图集
概括:这道题是蓟侠位同学的课后政治练习题,主要是关于建筑图集,指导老师为焦老师。《新疆传统建筑图集》是2009年新疆科学技术出...
[详情]分类:知识库时间:14:54 - 成分分析
概括:这道题是颜仑徽同学的课后练习题,主要是关于成分分析,指导老师为戈老师。
题目:成分分析
解: ...[详情]分类:知识库时间:14:56 - 无坚不摧之力
概括:这道题是路婆掖同学的课后政治练习题,主要是关于无坚不摧之力,指导老师为祁老师。
题目:无坚不摧之力
解:<...[详情]分类:知识库时间:14:54 - 气垫船原理
概括:这道题是席洞朴同学的课后练习题,主要是关于气垫船原理,指导老师为毛老师。通风工程是送风、排风、除尘、气力输送以及防、...
[详情]分类:知识库时间:14:54 - 海狸
概括:这道题是项筛卦同学的课后练习题,主要是关于海狸,指导老师为钱老师。
题目:海狸
解: ...[详情]分类:知识库时间:14:56 - 38译码器
知识点:《38译码器》 收集:瞿收霉 编辑:桂花
[详情]分类:知识库时间:10:57
本知识点包括:1、38译码器在单片机系统中的作用是什么? 2、求vh... - aidma
知识点:《aidma》 收集:蒯超峦 编辑:栀子花女孩
[详情]分类:知识库时间:12:08
本知识点包括:1、SOV/SOM是什么?AIDMA和AIDAS理论代表什么...